

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US**

Certificate of Analysis

Jan 12, 2022 | HIGH ROLLER PRIVATE LABEL LLC

4095N 28TH WAY HOLLYWOOD, FL, 33020, US

PRODUCT IMAGE

SAFETY RESULTS

Heavy Metals PASSED

Microbials

Mycotoxins

Residuals Solvents PASSED

PASSED

Water Activity

Moisture **NOT TESTED**

Sample: DA20110001-001

Harvest/Lot ID: WR21422 Batch#: WR21422 Seed to Sale# N/A Batch Date: N/A

Sample Size Received: 150 gram Total Weight/Volume: N/A Retail Product Size: 9 gram Ordered: 01/10/22 sampled: 01/10/22 Completed: 01/12/22

Sampling Method: SOP Client Method

Kaycha Labs

Matrix: Edible

Watermelon Rings, 31mg CBD per 9g Gummy

PASSED

Page 1 of 4

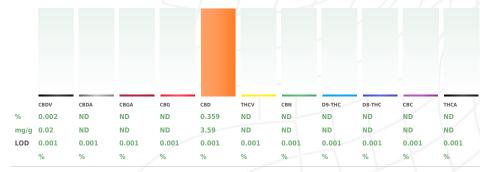
Terpenes

CANNABINOID RESULTS

Total THC

TOTAL THC/Gummy :0 mg

Total CBD TOTAL CBD/Gummy :40.23 mg


Total Cannabinoids

Total Cannabinoids/Gummy :40.23

PASSED

		Extraction	Extracted	
Analyzed By	Weight	date	Ву	
457	NA	01/10/22		457
Analyte		LOD	A.L	Result
Filth and Foreign	Material	0.1	5	ND
Analysis Metho	d -SOP.T.40.013	Batch Date	e: 01/10/22 1	0:59:14
Analytical Batc	h -DA036647FIL	Reviewed	On - 01/10/22	15:50:20
Instrument Use	d: Filth/Foreign	Material Micro	oscope	

Cannabinoid Profile Test

Analyzed by	Weight	Extraction date :	Extracted By :
450	7.9594g	01/10/22 10:01:34	574
Analysis Method -SOP.T.40.020,	SOP.T.30.050	Reviewed On - 01/12/22 11:16:49	Batch Date: 01/10/22 16:04:01
Analytical Batch -DA036660POT	Instrument Used : DA-	LC-003 (Edibles) Running On: 01/12/22 11:0	06:50

Reagent	Dilution	Consums. ID
010622.R32	400	CE0123
121321.80		239146
010622.R33		293017195
113021.82		61633-125C6-125E
		11945-019CD-019C

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

01/12/22

Kaycha Labs

Watermelon Rings, 31mg CBD per 9g Gummy

Matrix : Edible

Certificate of Analysis

PASSED

HIGH ROLLER PRIVATE LABEL LLC

4095N 28TH WAY

DAVIE, FL, 33314, US

HOLLYWOOD, FL, 33020, US Telephone: (954) 505-4481 Email: admin@highrollerllc.com Sample: DA20110001-001 Harvest/Lot ID: WR21422

Batch#: WR21422 Sampled: 01/10/22

Ordered: 01/10/22

Sample Size Received: 150 gram Total Weight/Volume: N/A

Completed: 01/12/22 Expires: 01/12/23

Sample Method : SOP Client Method

Page 2 of 4

Pesticides

PASSED

LOD	Units	Action Level	Result
0.01	ppm	0.3	ND
0.01	ppm	3	ND
0.01	ppm	2	ND
0.01	ppm	3	ND
0.01	ppm	0.1	ND
0.01	ppm	3	ND
0.01	ppm	3	ND
0.01	ppm	0.5	ND
0.01	PPM	3	ND
0.05	ppm	0.5	ND
0.01	ppm	0.1	ND
0.1	ppm	3	ND
0.1		3	ND
0.01		0.1	ND
0.02		0.5	ND
0.01		0.1	ND
0.01		0.1	ND
			ND
			ND
			ND
	* * *		ND
			ND ND
			ND
/		-	ND
			ND
	ppm	- 1	ND
0.01	ppm	0.4	ND
	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.01 ppm	0.01 ppm 0.3 0.01 ppm 2 0.01 ppm 3 0.01 ppm 0.1 0.01 ppm 3 0.01 ppm 3 0.01 ppm 0.5 0.01 ppm 0.5 0.01 ppm 0.1 0.1 ppm 0.1 0.1 ppm 0.1 0.01 ppm 0.1 0.02 ppm 0.5 0.01 ppm 0.1 0.01 ppm 2 0.01 ppm 2 0.01 ppm

Pesticides	LOD	Units	Action Level	Result
PROPOXUR	0.01	ppm	0.1	ND
PYRETHRINS	0.05	ppm	1	ND
PYRIDABEN	0.02	ppm	3	ND
SPIROMESIFEN	0.01	ppm	3	ND
SPIROTETRAMAT	0.01	ppm	3	ND
SPIROXAMINE	0.01	ppm	0.1	ND
TEBUCONAZOLE	0.01	ppm	1	ND
THIACLOPRID	0.01	ppm	0.1	ND
THIAMETHOXAM	0.05	ppm	1	ND
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.005	PPM		ND
TOTAL DIMETHOMORPH	0.02	PPM	3	ND
TOTAL PERMETHRIN	0.01	ppm	1	ND
TOTAL SPINETORAM	0.02	PPM	3	ND
TOTAL SPINOSAD	0.01	ppm	3	ND
TRIFLOXYSTROBIN	0.01	ppm	3	ND
PENTACHLORONITROBENZENE (PCNB) *	0.01	PPM	0.2	ND
PARATHION-METHYL *	0.01	PPM	0.1	ND
CAPTAN *	0.025	PPM	3	ND
CHLORDANE *	0.01	PPM	0.1	ND
CHLORFENAPYR *	0.01	PPM	0.1	ND
CYFLUTHRIN *	0.01	PPM	1	ND
CYPERMETHRIN *	0.01	PPM	1	ND

瑶	
0	

Analyzed by

Pesticides

Extraction date **Extracted By** PASSED

DB5 , 1665 1.0505g 01/10/22/02/01:34
Analysis Method - SOP.T.30.065, SOP.T.40.065, SOP.T.40.066, SOP.T.40.070 , SOP.T.30.065, SOP.T.40.070
Analytical Batch - DA036641PES , DA036626VOL Raviewal Analytical Batch - DA036641PES , DA036626VOL Raviewal Analytical Batch - DA036641PES , DA036626VOL

Weight

Instrument Used: DA-LCMS-003 (PES), DA-GCMS-001 Running On: 01/10/22 16:18:54, 01/10/22 16:08:07 Batch Date: 01/10/22 10:36:30 Reagent Dilution Consums, ID

Pesticide screen is performed using LC-MS and/or GC-MS which can screen down to below single digit ppb concentrations for regulated Pesticides. Currently we analyze for 67 Pesticides. (Method: SOP.T.30.060 Sample Preparation for Pesticides Analysis via LCMSMS and GCMSMS. SOP.T.40.065/SOP.T.40.066/SOP.T.40.070 Procedure for Pesticide Quantification Using LCMS and GCMS). * Volatile Pesticide screening is performed using GC-MS which can screen down to below single digit ppb concentrations for regulated Pesticides. Analytes marked with an asterisk were tested using GC-MS.

250

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control OC parameter, NC=Non-controlled OC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

01/12/22

Signature

Kaycha Labs

Watermelon Rings, 31mg CBD per 9g Gummy

Matrix : Edible

Certificate of Analysis

PASSED

HIGH ROLLER PRIVATE LABEL LLC

4095N 28TH WAY HOLLYWOOD, FL, 33020, US **Telephone:** (954) 505-4481 **Email:** admin@highrollerllc.com Sample : DA20110001-001 Harvest/Lot ID: WR21422

Batch#: WR21422 Sampled: 01/10/22 Ordered: 01/10/22 Sample Size Received : 150 gram
Total Weight/Volume : N/A
Completed : 01/12/22 Expires: 01/12/23

Completed: 01/12/22 Expires: 01/12/23 Sample Method: SOP Client Method

Page 3 of 4

Residual Solvents

PASSED

Residual Solvents

PASSED

Solvent	LOD	Units	Action Level	Pass/Fail	Resu
METHANOL	25	ppm	250	PASS	ND
ETHANOL	500	ppm	5000	PASS	<2500
PENTANES (N-PENTANE)	75	ppm	750	PASS	ND
ETHYL ETHER	50	ppm	500	PASS	ND
ACETONE	75	ppm	750	PASS	ND
2-PROPANOL	50	ppm	500	PASS	ND
ACETONITRILE	6	ppm	60	PASS	ND
DICHLOROMETHANE	12.5	ppm	125	PASS	ND
N-HEXANE	25	ppm	250	PASS	ND
ETHYL ACETATE	40	ppm	400	PASS	ND
BENZENE	0.1	ppm	1	PASS	ND
HEPTANE	500	ppm	5000	PASS	ND
TOLUENE	15	ppm	150	PASS	ND
TOTAL XYLENES	15	ppm	150	PASS	ND
PROPANE	500	ppm	5000	PASS	ND
CHLOROFORM	0.2	ppm	2	PASS	ND
1,2-DICHLOROETHANE	0.2	ppm	2	PASS	ND
BUTANES (N-BUTANE)	500	ppm	5000	PASS	ND
ETHYLENE OXIDE	0.5	ppm	5	PASS	ND
1,1-DICHLOROETHENE	0.8	ppm	8	PASS	ND
TRICHLOROETHYLENE	2.5	ppm	25	PASS	ND

 Analyzed by
 Weight 0.0292g
 Extraction date 0.1/10/22 06:01:25
 Extracted By 850

Analysis Method -SOP.T.40.032

Analytical Batch -DA036671SOL Reviewed On - 01/11/22 15:15:09

Instrument Used : DA-GCMS-002 Running On : 01/11/22 14:47:31 Batch Date : 01/10/22 17:47:54

Reagent	Dilution	Consums. ID
030420.09	1	27296 KE136

Residual solvents screening is performed using GC-MS which can detect below single digit ppm concentrations. Currently we analyze for 21 Residual solvents.(Method: SOP.T.40.032 Residual Solvents Analysis via GC-MS).

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoQ) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

01/12/22

Signature

4131 SW 47th AVENUE SUITE 1408 **DAVIE, FL, 33314, US**

Kaycha Labs

Watermelon Rings, 31mg CBD per 9g Gummy

Matrix: Edible

Certificate of Analysis

PASSED

HIGH ROLLER PRIVATE LABEL LLC

4095N 28TH WAY

HOLLYWOOD, FL, 33020, US Telephone: (954) 505-4481 Email: admin@highrollerllc.com Sample : DA20110001-001 Harvest/Lot ID: WR21422

Batch#: WR21422 Sampled: 01/10/22

Ordered: 01/10/22

Sample Size Received: 150 gram

Total Weight/Volume: N/A Completed: 01/12/22 Expires: 01/12/23

Sample Method : SOP Client Method

Page 4 of 4

Microbials

PASSED

OCHRATOXIN A

Mycotoxins

PASSED

Analyte	
ESCHERICHIA COLI SHIGELLA SPP	
SALMONELLA SPECIFIC GENE	
ASPERGILLUS FLAVUS	
ASPERGILLUS FUMIGATUS	
ASPERGILLUS TERREUS	
ASPERGILLUS NIGER	

Instrument Used: PathogenDx Scanner DA-111

LOD	Result	Action Level
	not present in 1 gram.	
	not present in 1 gram.	
	not present in 1 gram.	
	not present in 1 gram.	
	not present in 1 gram.	
	not present in 1 gram.	

Analysis Method -SOP.T.40.043 / SOP.T.40.044 / SOP.T.40.041 Analytical Batch -DA036631MIC Batch Date: 01/10/22 10:11:56

Annah mandi bar	Mainba	Potential data	Putting at and Day
Analyzed by	Weight	Extraction date	Extracted By
513	0.883g	01/11/22 09:01:45	513

Analyte	LOD	Units	Result	Action Level	
AFLATOXIN G2	0.002	ppm	ND	0.02	
AFLATOXIN G1	0.002	ppm	ND	0.02	
AFLATOXIN B2	0.002	ppm	ND	0.02	
AFLATOXIN B1	0.002	ppm	ND	0.02	

ND

0.02

Analysis Method -SOP.T.30.065, SOP.T.40.065

Analytical Batch -DA036642MYC | Reviewed On - 01/11/22 12:42:20

0.002

Instrument Used: DA-LCMS-003 (MYC) Running On: 01/10/22 16:19:30 Batch Date: 01/10/22 10:37:53

Analyzed by	Weight	Extraction date	Extracted By	
585	g	01/10/22 02:01:29	585	

Dilution

Running On:

Microbiological testing for Fungal and Bacterial Identification via Polymerase Chain Reaction (PCR) method consisting of sample DNA amplified via tandem Polymerase Chain Reaction (PCR) as a crude lysate which avoids purification. (Method SOP.T.40.043) If a pathogenic Escherichia Coli, Salmonella, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, or Aspergillus terreus is detected in 1g of a sample, the sample falls the microbiological-impurity testing. Pour-plating is used for quantitation and confirmation, Total Yeast and Mold has an action limit of 100,000 CFU.

Aflatoxins B1, B2, G1, G2, and Ochratoxins A testing using LC-MS. (Method: SOP.T.30.065 for Sample Preparation and SOP.T40.065 Procedure for Mycotoxins Quantification Using LCMS. LOQ 1.0 ppb). Aflatoxin B1, B2, G1, and G2 must individually be <20ug/Kg. Ochratoxins must be $<20\mu g/Kg$

Heavy Metals

PASSED

Reagent	Reagent	Reagent	Dilution	Consums. ID	
122221.R47	011022.R02	120121.08	100	179436	
010422.R26	011022.R03			3146-870-008	
122221.R49	010522.R40			12265-115CC	
010422.R24	122821.R12				
011022.R04	010522.R39				
010422 P25	021021 13				

Metal	LOD	Unit	Result	Action Level
ARSENIC	0.02	PPM	ND	1.5
CADMIUM	0.02	PPM	ND	0.5
MERCURY	0.02	PPM	ND	3
LEAD	0.05	PPM	ND	0.5
Analyzed by	Weight	Extraction	n date	Extracted By
1022	0.2477g	01/10/22 12	:01:47	1879

Analysis Method -SOP.T.40.050, SOP.T.30.052, SOP.T.30.053, SOP.T.40.051 Analytical Batch -DA036630HEA | Reviewed On - 01/11/22 07:52:04

Instrument Used: DA-ICPMS-003 Running On: 01/10/22 22:14:53 Batch Date: 01/10/22 09:13:27

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma – Mass Spectrometer) using Method SOP.T.30.052, SOP.T.30.053 Sample Preparation for Heavy Metals Analysis via ICP-MS and SOP.T.40.050, SOP.T.40.051 Heavy Metals Analysis via ICP-MS.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control OC parameter, NC=Non-controlled OC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature

01/12/22